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COMPUTATION OF RELATIVE CLASS NUMBERS 
OF CM-FIELDS BY USING HECKE L-FUNCTIONS 

STEPHANE LOUBOUTIN 

ABSTRACT. We develop an efficient technique for computing values at s = 1 
of Hecke L-functions. We apply this technique to the computation of relative 
class numbers of non-abelian CM-fields N which are abelian extensions of 
some totally real subfield L. We note that the smaller the degree of L the more 
efficient our technique is. In particular, our technique is very efficient whenever 
instead of simply choosing L = N+ (the maximal totally real subfield of N) 
we can choose L real quadratic. We finally give examples of computations 
of relative class numbers of several dihedral CM-fields of large degrees and of 
several quaternion octic CM-fields with large discriminants. 

1. INTRODUCTION 

In [Lou6] we developed a general technique for computing relative class numbers 
h- of CM-fields N based on the use of (8) and Theorem 2 below with L = N+ and 
X = XN/N+, in which case one can easily prove that W. = 1 (use the functional 
equations satisfied by (N and (N+). This technique-has been used to compute 
relative class numbers of various non-abelian CM-fields of degree 4, 6, 8, 12 or 16 
(see [Lou2], [Lou3], [Lou4], [LO] and [LOO]), and these computations were in turn 
used to settle the class number one problem for the non-abelian normal CM-fields 
of degree < 16. However, this technique becomes too slow when the degree and 
discriminant of N become larger. Indeed, setting 

(1) 

B(N) = AN/N+ (log AN/N+) v where AN/N+ = d 

we proved that if A > 1 and n are fixed, then, according to (8) and (11), we should 
compute B(N) terms in the absolutely convergent series (10) (with X = XN/N+) to 

compute h- when N ranges over a familly of CM-fields of degree 2n. In particular, 
this technique is too slow to compute relative class numbers of dihedral CM-fields 
of degree 4p when the prime p is not that large, say equal to 5 or 7. 

The main prospect of this paper is to explain how (8) and Theorem 2 below 
make it easy to compute the relative class numbers of such dihedral CM-fields 
N by computing the values at s = 1 of (p - 1)/2 Hecke L-functions over the 
real quadratic subfield L of N. According to Theorems 4 and 7, to get a real 
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approximation of the integer h- close enough to it to enable us to deduce its exact 
value, we have to compute much fewer than B(N) terms in each of the (p - 1)/2 
absolutely convergent series (given in Theorem 4) whose limits are the values at 
s = 1 of these Hecke L-functions (see also our third example). Subsections 4.1, 4.2 
and 4.3 will provide the reader with actual computations of Hecke L-functions over 
real quadratic fields. Note that according to Theorem 2, there is nothing peculiar 
to L being a real quadratic field. It is just that it is easier to compute in ray class 
fields of quadratic fields than to compute in ray class fields of number fields of higher 
degree. In fact, in using Theorem 2 below and [Lou6] to get a practical technique 
for computing values of Km,i and Km,2 (i.e., to get a generalization of Theorems 
6 and 17), it would be easy to generalize all our results to cases where L is not 
quadratic (in the last section of this paper we work out an example of calculation 
of a Hecke L-function over a real cubic field). Hence, it is worth noticing that our 
technique is much more general than the one developed in [Mey], which assumes 
L quadratic. Our technique is also more efficient than the one developed in [Okal] 
and [Oka2] based on the results in [Shi]. Indeed, a close look at [Okal] shows that 
if the fundamental unit 

e = (X + Ye dL)/2 

of a real quadratic field L is large, which happens quite often (for example, if 
dL = 18361 then ye has 49 digits in base 10), then Shintani's method becomes too 
slow to be of any practical use for numerical computations, for it requires a number 
of operations growing to infinity at least linearly in the size of ye to compute values 
of Hecke L-functions over L at s = 1. Even in the case where ye is small, Shintani's 
method is less efficient than the one developed here (see subsection 4.3). 

To conclude, the technique here developed is more efficient but less simple than 
the one used in [Lou4] and [Lou6]. Indeed, if N is a normal CM-field, we only 
have to know how to compute the inertia and residual degrees in N of any prime 
p to be able to use the method developed in [Lou6]. Here, we need a precise 
description of the Hecke characters associated to the abelian extension N/L, and 
we must determine the values of all the W.'s associated to these Hecke characters. 
However, the present method is much more efficient. 

2. NUMERICAL COMPUTATION OF L(1, X) 

Let C = 001002 ... ootCo be a cycle of a number field L, where C0,, the finite 
part of C, is an integral ideal of L and where ooi, 1 < i < t, are t distinct real 
places of L. For simplicity of notation, NL/Q(C) and NL/Q(CO) will both denote 
the absolute norm of the ideal Co. Let CLL(C) denote the group of C-ideal classes, 
which is also called the unit ray class group of L modulo C. If C' divides C, then the 
canonical map CLL(C) - CLL(C') is onto and any character X' on CLL(C'), i.e., 
any morphism of multiplicative groups X': CLL (C') ) C*, induces a character X 
on CLL (C). We say that a character X on CLL (C) is primitive if it is not induced 
by any character X' on CLL(C') for any C' 74 C dividing C. In that situation, C is 
called the conductor of X and we write C = Fx. 

Let E/L be an abelian extension of number fields of conductor C = YE/L (a cycle 
of L). According to class field theory, E is a subfield of the unit ray class field RL (C) 
of L where from the Artin map we get an isomorphism Gal(RL(C)/L) -_ CLL(C). 
We let XE/L denote the group of primitive characters of conductors dividing C = 
FE/L which induce the group of (not necessarily primitive) characters on CLL(C) 
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which are trivial on Gal(RL(C)/N). We have the following factorization of the 
Dedekind zeta function of E: 

(2) (E(S) J J L(s, X). 
XEXE/L 

Let N be a number field. We say that N is a CM-field if N is totally imaginary 
and if N is a quadratic extension of its maximal totally real subfield N+. In that 
situation, the degree 2n of N is even and the class number hN+ of N+ divides the 
class number hN of N, and the ratio h- = hN/hN? is called the relative class 
number of N. Let QN E {1, 2}, WN, dN and dN+ denote the Hasse unit index of 
N, the number of roots of unity in N and the absolute values of the discriminants 
of N and N+, respectively. We have (see [Wa]) 

_ QNWN N Ress1=((N) (3) (21r)n dN+ Ress= ((N+) 

From now on, we assume that N is a CM-field of degree 2n and that N is 
an abelian extension of some of its totally real subfields L of degree M. Let C 
JN/L 001 ... OOmCN/L denote the conductor of this abelian extension N/L, and 
let C+ = N+/L denote the conductor of the abelian subextension N+/L. Therefore, 
C+ divides C, RL(C+) is a subfield of RL(C) and XN+/L is a subgroup of the group 

XN/L. We set XN/L = XN/L \ XN?/L. Notice that the conductor 'F of any X in 

XN/L is of the form F. = 001 ? oomCy for some Cx dividing CN/L. Using (2) for 

both N and N+, we get 

((N /(N +) (s) L t L(s, X) 
XEXN/L 

and 

(4) h- QNWNLdNL(IX). N (27r)n d f 
N+ XEX-/ 

Note that there are [N: L]/2 = n/rn characters in XN/L. It is known that if X is 
a primitive character of conductor C =00 ... oomCx which is ramified at all the m 
infinite places of L, then the Hecke L-function s ~-4 L(s, X) satisfies the functional 
equation 

(5) F(1 - s, X) = WXF(s,X) 

for some Artin root number W. with IWx- 1, where 

(6) F(s, X) = AsFm ((s + 1)/2)L(s, X) 

and 

(7) AX = dLNL/Q(CX)/rm. 

Let XN/N+ denote the quadratic Hecke character of conductor FN/N+ associated 
to the quadratic extension N/N+. We have 

AX N/+ dN?NN?/Q(YN/N+)/wT = dN/ r dN+ 
]7 

AX) 
XEXN/L 
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and we obtain 

(8) hN 271r / QNWN 17 A,L(1, X). 
XEXN/L 

For R(s) > 1, write 

L(s, X) Z an(X) 

n>1 

where 

(9) an(X) X(I) 

NL/Q (I)=n 

(this sum ranges over all the nonzero integral ideals of L of norm n, and we set 
x(I) 0 if I is not coprime with F.). According to (9), n ~-4 an(X) is multiplicative, 
i.e., gcd(m, n) = 1 implies amn(X) = am(X)an(X). Therefore, when doing actual 
computation we will only explain how we compute apk (x) on powers of primes. 
Using (5) and the Euler product of s ~-4 L(s, X), the reader can easily prove 

Lemma 1. If all the apk(X) are real, then all the an(X) are real, W. is equal to 
+1 or -1, L(1, X) is real, and L(1, X) > 0. 

Theorem 2. Let L be a totally real number field of degree m and let X be a primitive 
Hecke character of conductor C = 001002 ... o0mCy on the ray class group CLL(C) 
for some integral ideal Cx of L. In particular, we assume that X is ramified at 
all the infinite places of L. Let Wx be the Artin root number which appears in the 
functional equation of the Hecke L-function s H-* L(s, X). For a > 1 set 

1 '+iO B2-2s 

Km,i(B) 2=ri Ftm (s) s-1 ds 

and 
1 Ce+iO B2-2s 

ThnKm,2(B) =21ri cioFm( s-(1/2) 
Then 

(10) L(1,X) - z (X)Km, (n/Ax) + Wx 
an 

(X)Km,2(n/AX), 
n>1 n>1 

where Ax dLNL/Q(CX)/im, and since for B > 0 we have 

(11) 0 < Km,2(B) < Km,i(B) < me 2/m 

both the series which appear in (10) are absolutely convergent. 

Proof. Set 

1 ra+iOO 
Hm(x) = 2ri X I n((s + 1)/2)) x-sds (x > o and a> O) 

and 

1 fc+ioo 
G(x, X) = 27ri A F(s, Xx)-sds = an(X)Hm(nx,AX) (x > 0 and a > 1). 

on>1 
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Using the same line of reasoning as in [Lou4] and [Lou6], we obtain 

(12) G(x, X) = G(1/x,) (x > 0), 
x 

F(s, X) j G(x, X)xS j G(x, X)xs-ldx + Wx j G(x, -)x-sdx, 

and 

AXL(1, X) = F(1, X) 

an(X) Hm(nx/Ax)dx + Wx E an(x) Hm(nx/Ax) 
ni>1 ni>1 

Noticing that 
"O 00 ~~~~~~~dx 

Km,i(B) lBHm(x)dx and Km,2(B) = B Hm(x)-, 

we get (10). 
As for the proof of (11), we refer the reader to [Lou6, 3. Proof of Proposition 

1]. Notice that Km,i(B) + Km,2(B) = Km(B), where m ~-4 Km(B) is the function 
used in [Lou6]. X 

3. HECKE L-FUNCTIONS OVER REAL QUADRATIC FIELDS 

Let L be a real quadratic number field. Let AL, dL, hL, XL and o?? and 002 

denote its ring of algebraic integers, the absolute value of its discriminant, its class 
number, its primitive modulo dL quadratic character and the two infinite places of 
L. Let Fo be an integral ideal of L, set F = 00102.F0, and let X be a primitive 
Hecke character on ClL (n), the ray class group modulo F. In particular, we assume 
that X is ramified at both 001 and 002. It is known that if we restrict X to principal 
ideals (a) coprime with Yo, then there exists a unique character Xo on (AL/Y0)* 
such that 

X((a)) = (a)Xo(o), 

where for any a E L \ {0} we let v(a) denote the sign of NL/Q (a). This character 
Xo is called the modular character associated with X. 

Notice that if hL = 1 then X = vXo and, to compute X on ideals, it remains to 
explain how one can effectively determine a generator aL of a principal primitive 
ideal 

L=QZ+ P + vdL z 

of norm Q. Set xo = (P + dL)/(2Q), let xo = [ao,aal, .] be the continued 
fractional expansion of xo, and set xn = [an, an+1, ...]. It is well known that xn 
(Pn + dL)/(2Qn), where the Pn's and Qn's are recursively defined by 

an = [Xn] = [(Pn + dL)/(2Qn)1, 

n+1 =2anQn -Pn7 

LQn+1 (dL - Pn+1 )/(4Qn). 
We define two sequences (Pn)n>-? and (qn)n>?l by setting 

(p-,q-1) = (0,1), 

(po,qo) = (1,0), 
(Pn+l vqn+l) = (anPn +Pn-17 anqn + qn-l) 
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Since L: is principal, there exists m > 0 such that Qm = 1 and 

= ((2pmQ - qmP) - qm dL)/2 

is an explicit generator of the principal ideal L (see [LO]). 

Proposition 3 (See [Sie]). Choose a E L such that (-y dL)YFo I is an integral 
ideal coprime with Fo, and set 

TJo (ay,Xo) Xo (A)e2wiTrL/Q (AY) 

A mod F0 

where TrL/Q stands for the trace from L to Q. Then 

WX=X (1 ) v (-y Vd) T-rLO (-Y, Xo) 

has absolute value one and does not depend on the choice of -y. In particular, if 
So = (1) then we may take ay 1/d-L, and we get Wx = 1. 

We now explain how to compute numerical approximations of L(1, X) that are 

as good as desired for Hecke L-functions over real quadratic fields. 

Theorem 4 (See Theorem 2 and (11)). 1. We have 

(13) L(1,X) z an K21(r/A ) + W, n K2,2((n/A.), 
n>1 n>1 

and since 0 < K2,2(B) < K2,1(B) < 2e-, these series are absolutely conver- 
gent. 

2. For any positive integer M > 2A., in setting 

(14) SM( zan) =) K2,1(n/A ) + 
an ( K2 2(n/A 

n=1 n=1 

we have 

(15) |L(1,X) - SM(x)I < 4(log(Me) + 1)2e-M/Ax 

and there exists Cl > 0 absolute and effective such that for any L, any X and 
any M > 0 we have 

(16) JL(1, X) I< Ci log2 (2eAx) 

and 

(17) SM (X) I < C1 log2 (2eAX). 

3. Conversely, there exists C2 > 0 absolute and effective such that for any L and 
any non-quadratic X we have 

(18) [L(1 , X) > C2 / log2 (2eAj) 

Proof. We prove point 2. We have an(X)I < d2(n), where d2((n) is the number of 
factorizations of n as a product of two positive integers. We now follow the same 
line of reasoning as in [Lou4], and set 

S(d) ef d2((n) < (E < log2 (eX) 
n<x n<x 
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and 

RM (X) z E d2(n) -n/A. 
n>M 

Using (11), we get IL(1, X) - SM(X) I < 4RM(X) and 

4RM (x) < 4 E S(n) (,-n/A._e- (n+l)/Ax) 
n>M 

< _ E l0g2 (en,) -n/A. 

< _ |J log2(ex)e-x/Axdx = 4J log2(eA,x)e-xdx, 
AX M/AX 

where the last inequality holds for M such that Mlog(eM) > 2AX , hence for 
M > 2A, (note that we always have A. > 1/2). Finally, in setting a = M/AX > 2 
and b= eAx > 0, we get (15) from 

j log2(bx)e xdx e log2(ab) + 2j log(bx)e dx 

< e-a log2 (ab) + j J log(bx)e-xdx 

ea log2 (ab) + -ea log(ab) + _ d - 

< elog2( ab) +2 -ealog(ab) + 2 - a a2 

As for (16) and (17), we use the previous bound on RM(X) and note that 

4 , <d2(f)e-l/AX < 4 log2 (en)e<n/Ax 8log2(2eA.). 
n<2A. x n<2Ax 

Finally, the proof of point 3 follows by the same method as in [Loul]. 

Let N be a CM-field of degree 2n which is an abelian extension of degree n of 
some real quadratic subfield L. Recall that 

hN = QNWN 17 4AL(1,X) 
XEXIN/L 

and set 

Ax 
hN(M) = QNWN r71 X(M), 

yE XN /L 

where the SX(M) are defined in Theorem 4. When doing actual computations, to 
find an upper bound onlh- -h-(M) we use (15)-(18) and the following technical 
lemma: 
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Lemma 5. Let (xk)1<k<? be n nonzero complex numbers, let (Ck)1<k<n be n com- 
def 

plex numbers, and set c = maxj<k<n( jkj). Then 

| k=1 ) k=1 k= k=1 )(x (/z l)-1 

We refer the reader to Theorem 7 for a more general use of this technical lemma. 
Now we explain how we can practically compute K2,1(B) and K2,2(B) for any 

B > 0: 

Theorem 6. Let y 0.577 215 664 901 532 860 606 512 090... denote Euler's 
constant and let B be positive. For i E {1, 2}, set 

an,i (B) =y+ log B- 
2n 

- 

We have the following power series expansions: 

(19) K 4 1: an, 1 (B) B 2n+2 
(19) K2,1(B) = 1 + 4 E an,i(B) (2n + 2)((n!)2' 

n2>O 

(20) K + 4 1: an,2 (B) 
B 2n+2 

(20) K2,2 (B) rB B) (2n + 1)(n!)2 
n2>O 

and for any integer M > 0 we have 

B 2n+2 2B 2M+3 
(21) I an,i(B) (2n + 3 - i) (n!)2 -(M + 1) (M!)2 

n> M 

Proof. For the sake of argument we only prove (20), and (21) for i 2. Recall that 

1 +i B 2-2s 

K2,2 (B) F2 (S -ds. 
2iri J i ) s - (1/2) 

We set 
1 Z-M- I +iOO 2-2s 

Rm ~ ~ ~ F(S) ds, 
2]ri --iO s - (1/2) 

and we notice that the poles of 

s -* f (s) = r2 (s)B2-2s/(s - (1/2)) 

are s = 1/2 (which is a simple pole) and s = -n for any n > 0 (which are 
double poles). Pushing the line of integration R(s) a to the left to the line 
iR(s) =-M-, we obtain 

M 

K2,2(B) = Ress=j/2(f) + E Ress=-n(f) + RM 
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Now, since (rF/F)(s+1) = +(rF/F)(s) and (rF/F)(1) -y, we get (rF/F)(nr+1) 
-7y + Zkn1 k. Finally, we noticed in [Lou6] that 

rF(-M -1 +it) 2 _ II -- + + it4-2 < 
2 cosh(wrt) k=1 2 -(M!)2 cosh(7wt)' 

which yields the desired bound 

2BR2M+3 B dt 2B2M+3 

-(M + 1) (M!)2 J_ cosh(7rt) (M + 1)(M!)2 

4. EXAMPLES OF RELATIVE CLASS NUMBER COMPUTATIONS 

4.1. First example: Some Hilbert 2-class fields. We let L be a real quadratic 
field with fundamental unit of norm +1 and such that the 2-Sylow subgroup of its 
narrow ideal class group is cyclic of order n = 2m for some m > 2 (and hodd will 
denote the odd part of the narrow class number of L). Therefore, L Q(P1) 
for some primes P1 and P2 not equal to 3 modulo 4 satisfying 2 < P1 < P2 and 
(P1/P2) = +1 (Legendre's symbol). We let N and N+ denote the narrow Hilbert 
2-class field and wide Hilbert 2-class field of L, respectively. Then N is a dihedral 
CM-field of degree 2n = 2m?1 > 8 with maximal totally real subfield N+. Moreover, 
the relative class number of a dihedral CM-field N of degree 2m?1 > 8 is odd if 
and only if N is some such narrow Hilbert 2-class field (see [LO]). In that situation 
QN = WN= 2, Ax = dL/w2 and W. = 1 (use Proposition 3) do not depend on 
X E X/L, and 

4d n/4 

N (2r)~ n I 
XEXN/L 

is a perfect square. Now we explain how we computed an(X) on prime powers 
k. n = p k: 

If (p) = P is inert in L then P is principal in the narrow sense, X(P) = 1 and 

a k(X) { 0 if kisodd, 
p (X) l1 if k is even. 

Therefore, we have an(X) = 0 if (dL/n) =-1 (Kronecker's symbol). 
If P E {P1,P2} is ramified in L, say p2 = (p)- (pi) = Pi2, then the order of 

P in the narrow ideal class group of L is equal to 1 or 2, and X(P) = 1 or -1, 
respectively, and 

apk (X) = X(p)k 

Note also that if 'Pi has order 1 in the narrow ideal class group of L, then the other 
7Pj has order 2 in the narrow ideal class group of L (for their product, which is 
equal to the principal ideal (/dL), is principal in the wide sense but not principal 
in the narrow sense). In Table 1, we let p+ denote the pi for which the prime ideal 
of L above pi is principal in the narrow sense. 
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Finally, if (p) = PP' splits in L, then x(P') X(P)-1 and 

k 

apk (X) = ZX( p)X((p/ka) 
a=O 

( k + I if x(P) = 1, 

{(-I)k(k + 1) if x(F) -1, 
sin(2(k+1)k-pir/2m) if X(P) = exp(2kwpri/2m) 4 ?1 

We fix a prime ideal Q of L whose narrow ideal class has order 2m in the narrow 
ideal class group of L (in practice, we choose Q whith smallest norm). Let ep E 
{,o1, ... ,2m - 1} be the only integer in this set such that QePphodd is principal 
in the narrow sense. Then, x(P) = X(Q) -ephOdd where hodd h'dd 1 (mod 2m). 
We also let +b be the character defined by fb(Q) = exp(27ri/2m). We have XN/L = 

{g0 O < i < 2n - 1 and i = 2j + 1 odd}. Using the technique developed in this 
paper to compute the values at s = 1 of these n/4 = 2n/8 Hecke L-functions, we 
computed Table 1 of relative class numbers (the tables are in ?7). It agrees with the 
results of the computations we did in [Lou3] and [LO]. In [LO] we used a technique 
peculiar to these Hilbert class fields developed in [Zag] to efficiently compute such 
relative class numbers. Let us point out that the use of Zagier's method requires 
the determination of the structure of the ideal class group of L, whereas the method 
developed here does not require it, and, according to [LO, Table 2] and Table 1 of 
this paper, both techniques agree for the four Hilbert 2-class fields considered in 
[LO], for which the ideal class group of L is not cyclic. 

4.2. Second example: Dihedral CM-fields of degree 4p. We now want to 
explain how we can use our previous results to efficiently compute relative class 
numbers of dihedral CM-fields N. This was our main motivation for writing this 
paper. Indeed, in [LOO], to solve the class number one problem for the dihedral 
CM-fields N of degree 12 we reduced the computation of h- to that of h- , the 
relative class number of some non-normal sextic CM-subfield of N, and we used the 
technique for computing relative class numbers of CM-fields developed in [Lou6]. 
But this technique is too slow to compute relative class numbers of dihedral CM- 
fields N of higher degrees. Moreover, we used cubic polynomials PK (X) defining the 
non-normal maximal real subfields K = N+ of such No's to compute the coefficients 

an(XNo/N+). But it would be impossible to use such defining polynomials for fields 

of higher degrees, for their computation would be much too slow. To overcome 
both these problems we thought it more efficient to construct real dihedral CM- 
fields N+ of degree 2p by constructing characters of order p on ray class groups of 
real quadratic number fields L, for this would then enable us to compute relative 
class numbers by using the technique developed in this paper. 

Throughout this section, N will denote a dihedral CM-field of degree 4p, p any 
odd prime; that is, N is a normal CM-field such the Galois group Gal(N/Q) is 
the (non-abelian) dihedral group of order 4p. Since the complex conjugation must 
be in the celnter of this Galois group (see [LOO]), then the maximal totally real 
subfield N+ of N is normal, Gal(N+/Q) is the dihedral group of order 2p and we 
let L denote the only quadratic subfield of N over which N is cyclic. Therefore, L 
is real. We finally let M denote the maximal abelian subfield of N. Therefore, M 
is an imaginary biquadratic bicyclic number field containing L. Conversely, let N+ 
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be a real dihedral number field of degree 2p, where p > 3 is an odd prime. Let L 
be the quadratic subfield of N+ and let M be any imaginary biquadratic bicyclic 
field with maximal totally real subfield L. Then N = MN+ is a dihedral CM-field 
of degree 4p which is cyclic over L. It is known that there exist positive integers 
fN+/L, fM/L and fN/L such that FN+/L = (fN+/L)i FM/L = 001002(fM/L) and 
FN/L = lcm(FN+/L, FM/L) = 001002(fN/L) (see [Mar]). The following Theorem 7 
and Proposition 9 explain how to compute relative class numbers of such dihedral 
CM-fields: 

Theorem 7. Let N be a dihedral CM-field of degree 4p. Set AN = dLfN/L/1r2 

and let X be any one of the p-1 characters in XN/M = XN/L \ XM/L 

1. X = X+X-, where X+ E XN+/L has order p, and X- = XM/L E XM/L, which 
does not depend on X, is the quadratic character associated with the quadratic 
extension M/L. 

2. The character X* of Gal(N/Q) induced by X is a real valued irreducible char- 
acter of degree 2 of the dihedral group D4p. Hence all the an (X) are real and 
L(1, X) > 0, Wx = +1 (see [FQ, Th. 1]) and Ax = AN do not depend on X. 

3. QN = QM, WN = WM and h- divides h- (see [LOO]), and hI/h- = 

(hN/M)2 is a perfect square (see [LP] or the proof of Theorem 12) and 

(p-3)/2 AN 
(22) hN/ = [I -L(1, X ) 

4. Let a real number A > 1 and a prime p > 3 be given. Set 

B'(N) = A ANlog AN 
2 

and 
(p-3)/2 AN 

hN/M(M)= H 4 SM (X2 ), 

where the SM(X2j+1) 's are defined in Theorem 4. Assume that M > B'(N) > 
2AM. Then the limit R(M) = -h/M -h-M (M) as AN approaches infinity 
is equal to 0. 

Proof. To prove point 3 we use (8) for N and M and notice that the characters in 
XN/M come in conjugate pairs. Let us now prove point 4. We simplify the notation 
and set A = AN. Since the (p- 1)/2 primitive characters which appear in (22) have 
the same order 2p, none of them is quadratic and we may use point 3 of Theorem 
4. Set 

EM = 4(log(eM) + 1) 2e-M/A 

(which decreases for M > 2A). Using Lemma 5, (15) and (18), we obtain 

R(M) ? CP1)/2 (A) log 1 (2 eA) (exp ( log 2(2eA)) -1 

Therefore, M > B'(N) yields e-M/A < A-A(P-1)/2 EM <K log2(2eA)A-A(P-1)/2 
and 

logp+3 (2eA) 
R(M) ? A A-1)(p-1)/2' 

from which the desired result follows. . 
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Remark 8. When doing actual computation we use 

(p-3)/2 (p-3)/2 
AN 

(SM(X2j1 _EM) < hNM H 4 (SM(X2j+l) +?EM) 

(provided that all the (p - 1)/2 terms on the left hand side of these inequalites 
are positive), and we stop the computation when M is large enough and such that 
these inequalities squeeze only one rational integer. 

Proposition 9. 

1. Let Lo and L1 denote the two imaginary quadratic subfields of M. We have 

fM/L = d LdL1/dL, and a rational prime 1 divides fM/L if and only if it 
divides both dLo and dL1. Now, since for any prime ideal 12 of L lying above 
some rational prime I > 2 the value XM/L(LC) depends on I only, we may 
define El = XM/L (L), and we have 

[0 if XLo (l) XL1 () = 0, 
El = th-1 if XL (l) #-1 and either XLO (l) =1 or XL, (1) =-1, 

1 1 otherwise 

2. Let +b = X2j be any one of the (p - 1)/2 characters of order 2p which appear 
in Theorem 7, and let fb = f+fb- with 1|+ E XN+/L and ft- = XM/L denote 
its factorization. Then, for any rational prime I > 2 we have: 
(a) If f divides fN/L = lCm(fN+/L, fM/L), then alk (tb) = 0. 
(b) Assume that I does not divide fN/L- 

(i) If XL(l) =-1, then El = f+(l) = +1 and 

( 0 if kis odd, 
a1 if k is even. 

In particular, an (1b) = 0 if XL (n) = -1. 
(ii) If XL(l) = 0, then alk(g)) = El. 

(iii) If XL(l) = +1 and (1) = 12' in L, then 

f (k + 1)Ecl if f+ (IC) = +1, 
sin(2(k+1)k,) cp if f +(1) = exp(2kcri/p) # +1. 

In particular, if an(lb) /4 0, then gcd(n, fN/L) = 1 and XL (n) ? -1. 

Proof. We only prove point 2. If 1 not dividing fN/L is inert in L, then (1) = 1 
splits in N+/L and in M/L (look at inertia fields), which yields fb+(1) = +1, 
f_- (1) = +1 and the desired result. If 1 not dividing fN/L is ramified in L and 
(1) = 12, then 1 splits in N+/L (see [Mar, Prop. 111.3 page 124]), fb+(1) = +1, 
and we get the desired result. Finally, assume that I not dividing fN/L splits in 
L, and write (1) = 12'. Using the same line of reasoning as in [Cox, section D 
page 190-192], one can prove that any real dihedral field N+ of degree 2p and 
conductor FN+/L = (fN+/L) is a subfield of the ring class field of conductor fN+/L 
of the real quadratic field L (see [Let or [LPL]). Hence, any f+ in XN+/L must 

be trivial on the group generated by the principal ideals of the form (a), where 
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a E AL satisfies a _ a (mod (fN+/L)) for some rational integer a relatively prime 
to fN+/L. Therefore, we have f+/((l)) = +1, which yields /+ (I') = f+(L) 

k k 

ajk(+/) = ck Z+ b()af ('/)k-a = 6Ekf/()-k E+(z)2a 
a=O a=O 

and the desired result. o 

It remains to explain how we can compute ?$+ (L) and how we can construct real 
dihedral fields N+ of degree 2p. 

4.2.1. Numerical computation of the relative class numbers of some dihedral CM- 
fields of degree 4p. To test the efficiency of our approach, we choose to apply it 
in the following simple situation: the computation of relative class numbers of 
dihedral CM-fields N of degree 4p (p any odd prime) such that their real quadratic 
subfields L have class number one (which yields X = vXo), such that the extensions 
M/L are unramified at all the finite places (which yields FN/L = 0O1002FN+ /L 

and Xo = X+,o for any X E XN/L) and such that the conductors oN+/L of the 
cyclic extensions N+/L of degree p are as simple as possible, i.e. are of the form 

SN+/L = (q), where q 74 p is a positive prime integer (see Point 1 of Proposition 
10 below). We refer the reader to [LPL] for a comprehensive exposition of the 
construction and the computation of the relative class numbers of the dihedral 
CM-fields of degrees 4p (p any odd prime). We also refer the reader to [Let for 
the use of the technique developed here in the determination of all the dihedral 
CM-fields with class number one. We collect in the following proposition all the 
information we need to construct such simple dihedral CM-fields and to compute 
their associated modular characters: 

Proposition 10 (See [Mar], [Lelj and [LPL]). Let p be a given odd prime. Let L 
be a given real quadratic field. 

1. Let N+ be a real dihedral field of degree 2p containing L. There exist distinct 
primes qi not equal to p and satisfying qi XL(qi) (mod p) such that 

r 2 if p does not divide dL, 

fN+/L = pa]7 qi, where a = O or a 1 if p > 3 divides dL, 
i=1 t1 or2 if p = 3 divides dL. 

2. Assume that p does not divide hL. There is a bijective correspondence between 
the real dihedral fields N+ of degre 2p containing L and of conductor f+ > 1 
and the groups of order p generated by primitive characters of order p on 
(AL/(f+))* which are trivial on the image of Z and on the image of EL in 
this group. In particular, if a prime q 7& p is unramified in L and satisfies 
q XL (q) (mod p), then there exists a real dihedral field N+ of degree 2p and 
conductor q if and only if p divides (q - XL(q))/nL,q, where 

nL,q = min{n > 1; 3k E Z 1En=k (mod (q))}, 

in which case such an N+ is unique. Note that since the quotient group 
(AL/(q))*/ImZ has order q - XL(q), then nL,q always divides q - XL(q). 

3. Let q 74 p be prime. 
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(a) If (q) = QQ' splits in L and 0 is a nontrivial character on (AL/(q))* 
which is trivial on the image of Z, then there exists a nontrivial character 
q$q on (AL/Q)* such that for any a E AL prime to (q) we have 

?9(a) = q5q(a/a') = q5q(a)Oq(a'), 

where a' denotes the conjugate of a in L. Since (Z/qZ)* is canonically 
isomorphic to (AL/Q)*, we may assume that q5q is defined on (Z/qZ)*. 

(b) If (q) = Q is inert in L, then any character on (AL/(q))* of order p 
dividing q + 1 = q - XL(q) is necessarily trivial on the image of Z. 

In particular, if qo is a given character of order p on the group (AL/(q))* 
which is trivial on the image of Z in this group, then {ok; 1 < k < p -1} 
is the set of all the characters of order p on the group (AL/(q))* which are 
trivial on the image of Z. 

Throughout the remainder of this section we will choose q5o defined as follows: 
1. Assume that (q) = QQ' splits in L. We let gq denote the least positive gener- 

ator of (Z/qZ)* and let 5q be the character of order p on (Z/qZ)* defined by 
q$q(gq) = exp(27ri/p). If Pq E Z is such that 4q divides dL- then we may 
assume that 

QZ + Pq + dLZ 

It is easily checked that for any algebraic integer a = (x + yVdL)/2 E AL we 
have 

{ (x - yPq)/2 (mod Q), 
- (x+yPq)/2 (mod Q'), 

and for any a E (AL/(q))* we can compute nr, E Z such that nr = 
(x - yPq)/(x + yPq) in (Z/qZ)* and according to the previous lemma we 
set 

qO (a) = exp(27rj,ci/p) where j, = min{j > 0; nr = gi- (mod q)}. 

2. Assume that (q) = Q is inert in L. We let gq denote a generator of (AL/(q))* 
and according to the previous proposition we let q5o be defined by qo(gq) = 
exp(27ri/p), which yields 

q5o(a) = exp(27rj,i/p), where j, = min{j > 0; a -g (mod (q))}. 

Now, in Point 2 of Proposition 9 we may assume that we have chosen X such 
that X+,o = q5o. Hence, if b = X2j+l is an in Point 2 of Proposition 9, then 

O+ = q52j+1, and we can now practically compute the coefficients alk (X2i+l) and 
the approximations hN/M(M) of h-/M. In Table 2 the reader will find some 
examples of our computation of relative class numbers of such dihedral CM-fields 
of degree 4p > 12. 

Remark 11. Take X = X+X- E XN/L and notice that since M/L is assumed to be 
unramified at all the finite places, then Xo = X+,o is a primitive character of order 
p on (AL/(q))* which is trivial on the image of Z in this group. In Proposition 3 
we choose -y = (1/q d/L), which yields I = AL = (1) and 

(23) 

Wx= T(q) (1/q dL, Xo) = X OX(A)exp (27riTrL/Q(A/q dL)) 
q q A (mod (q)) 
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We used this formula to check numerically that all the Artin root numbers Wx are 
indeed equal to +1. 

4.3. Third example: Quaternion octic CM-fields. Throughout this section 
we let N denote a normal octic CM-field whose Galois group is the quaternion 
group of order eight. In that situation, the maximal totally real subfield N+ of 
N is a normal biquadratic bicyclic field, and we let L denote any one of the three 
real quadratic subfields of N+. Notice that N/L is cyclic quartic, and we let 
X denote either of the two conjugate quartic characters associated to this cyclic 
quartic extension N/L. 

Theorem 12. Let N denote a quaternion octic CM-field. The character X* of 
Gal(N/Q) induced by X is the real valued character of degree two of the quaternion 
group. Therefore, since L(s, X) = L(s, X, N/L) = L(s, IX* N/Q), then all the an(X) 
are real, Wx is equal either to +1 or to -1, and L(1,X) > 0. Finally, QN = 1, 
WN = 2, h- is even (see [Lou5, Lemma 5]), h-N/2 = (hN)2 is a perfect square and 

h- L(1, X) 

(use (8)). Let A > 1 be given, and set B'(N) = AAx log Ax and 

defA 
h- (M) = hN (M) - SM (X), 

where the Sx(M) are defined in Theorem 4. Assume that M > B'(N) > 2AX. 
Then the limit R(M) = Ih-- h(M) as Ax approaches infinity is equal to 0. 

Proof. We have h- = IL(O, X) 2/8. Now, X has order 4 and according to the Siegel- 
Klingen theorem we have L(O, X) E Q(i) (see [Hid, Cor. 1, page 57]), and since X* 
is real valued then L(O, X) is real. Therefore, L(O, X) is rational and the positive 
integer h-/2 = IL(0, X) 12/16, which is a square in Q, is the square of some positive 

N 

integer hN. 

Remark 13. Notice that the bound (1) is equal to B(N) = 4AA log2 Ax. 

4.3.1. Some pure quaternion octic CM-fields. We set L = Q(V'_) and let c = + 
denote the fundamental unit of the ring of algebraic integers A = Z[v'1] of L. Let 
q _ 3 (mod 8) be a positive prime and let Nq denote the only pure quaternion 
octic CM-field with maximal totally real field N+ = Q(, , and nbtice that 
h- is odd if and only if N is some Nq (see [Fro] and [Lou5]). We have dN 224q6 

and dN+ = 28q2, so that we easily get FN/L = 001002(4q\'2) and FN+/L (2q). 

Let X E XN/L denote any of the two conjugate characters of order 4 on the ray 
class group of conductor FN/L of L associated to the cyclic quartic extension N/L. 
Then Ax = 16q/ir. 

Proposition 14 (See [Fro]). Let q _ 3 (mod 8) be a positive prime. Let P2 = 
(X;2) denote the prime ramified ideal of L = Q(\'2) lying above 2. We may write x = 
vXo, where Xo = X2Xq is a primitive character of order 4 on the group (AL/ Fq)* 
and where X2 and Xq are primitive quartic characters ont the groups (A/P25)* and 

(A/ (q)) *, respectively. 
1. We may assume that Xo = X2Xq is defined by means of X2(-1) 1, X2(5) - 

-1, X2(E) = Xq(e) = i = exp(2iri/4). 
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2. For any a E AL we have X2(a/) = X2(a), Xq(C') = Xq(ae) and Xo(cl) = 

Xo(a). In particular, if (p) = P1P splits in L then x(P') = x(1) 
3. We have a2m (X) = aqm (X) = 0, and if p #2 andp p/ q then we have 

ro if p is inert in L and m is odd, 
j (X((p))m/2 if p is inert in L and m is even, 

apm (X) (m + 1)'Ep if (p) = P1"P splits in L and cp = x(1P) = ?1, 
1+(-)M cm if (p) = PPI splits in L and cs = X(P) = ?i. 

Hence, all the apm (X) are real. 
4. We have Wx = -1. 

Proof. We note that the multiplicative group 

(AL/P25) = {?5 ab; a E {0, 1}, b E {0, 1, 2, 3}} 

of order 16 is isomorphic to (Z/2Z) x (Z/2Z) x (Z/4Z), and that the multiplicative 
group (AL/(q))* of order q2 _ 1 8 (mod 16) is cyclic. Now, as {1, 5} is the kernel 
of the canonical map (AL/lp)* 5 (AL /,p4)* and as X2 is primitive, we must 
have X2(5) = -1. As ( 1)(q 2-1)/4 - 1, then -1 is a fourth power in (AL/(q))* 
and Xq(-1) = +1. Moreover, as NL/Q(E) = -1 and q _ 3 (mod 4), then c is not a 
square in (AL/(q))* and Xq(E) = ?i. Finally, since 

X - X((-1)) = V(-l)Xo(-l) = Xo(-l) = X2(-l)Xq(-l) = X2(-l), 

VX(('E) = V('E)XO('E) = -XO('E) = -X2(1E)Xq(1E), 

we get X2(-l) = +1 and Xq(E) = X2(E) = ?i. Now, X2(c') = X2(-l/E) = 1/X2(E) = 

X2(e) yields X2(a') = X2(a) for any a E AL. . 

The following table is used to compute X2 (a) for a = x + y v' E AL prime to 
v/-: 

2~~~~~~~~~ 
oe 1 e 3 -1 -e -E2 -E3 (mod P2) 

Ce = 1 1 + X 3 + 2 7 + X 7 7 + 3 5 + 2 1 + 3 (mod p5) 

X2G?) 1 i -1 -i 1 i -1 -i 

Ce = 5 5E 5E2 5E3 -5 -5E -5E2 -5E3 (mod P5) 

Ce= 5 5+v2 7+2V/ 3+v2 3 3+3v2 1+2v2 5+3v2 (mod1p5) 

X2G0) -1 -i 1 i -1 -i 1 

Note that in setting r1q = 6(q -1)/4 (modulo p5), we have 

Xq (a) = exp(2j,c7ri/4), 

where 

j, = min{j > 0; a (q2)/4 _ r1 (mod (q))} E {0, 1, 2,3}. 

Of course, we use the binary representation of (q2 - 1)/4 to efficiently compute 
a(q -1)/4 modulo the ideal (q) of L. To compute X(P) we determine a generator 
a of P whih is known to be principal in L, and we compute X(F) = W((a)) = 
v(a)X2(aY)Xq(a). Numerical computations yield Table 3. We also computed several 
relative class numbers for q large: 

If q = 2 106 + 3, then hj = 851 290 664 450 = 2 (652 415)2. 

If q = 107+ 19, then h- = 66 361 628 315 682 = 2 (5 760 279)2. 
Nq 
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Remark 15. In Proposition 3 we choose ay = 1/(16q), which yields I = AL = (1) 
and 

w-1 WX =4q E XS xo(xA? + yV) exp(47rxAi/16q). 4 
,\f-x> +y> v_(mod (4qV2) ) 

We used this formula to check numerically that all these Artin root numbers Wx are 
indeed equal to -1. Even checking this result yields a faster and more satisfactory 
method than the one used in [Lou2]. Note also that Shintani's method (see [Okal]) 
is less efficient than the method developed here, for it would require us to compute 
> q2 terms in some finite sum to compute the exact value of h- . Indeed, set 

3 2 2 1 ~~~1 1 
B(x,y) = 2 (X + y2 _ x i + I) + (x - _)(y - -) 2 ~ ~~3 2 '2 

let (z) denote the fractional part of the real number z, set 

-1 /b +4 4a -3b \ b \ 
16q 1 (K 6q + 16q) 

and notice that Z[\2] i3 aa,b-b + a\'2 (mod (4qv2)). Now, hq = JL(O, X)12/8, 
and Shintani's method yields 

4q 16q 4a -3b b \ 
(24) L(0, X) = E E X_(b + a__)B 16 ) 16) 

a=1 b=1 (?V')( 6q~ 6 
b odd 

5. HECKE L-FUNCTIONS OVER TOTALLY REAL CUBIC FIELDS 

All the cases hitherto given refer to real quadratic fields L. Therefore, we would 
like to finally use Theorem 2 on a simple example of a totally real cubic field L. 
We choose L = Q+(47) = Q(cos(27r/7)) and set N = KL, where K denotes the 
imaginary cyclic quartic field Q(5). Therefore, N is an imaginary cyclic field of 
degree 12, QN = 1, WN = 10, N+ = L(v45), dL = 72, dK = 53, dN+ = 53 74, 

dN= dKd4L = 59. 78 and FN/L = 001002003(5) (for 5 is inert in L), and we must 
have dN= d LNL/Q(YN/L). Using [Wa], we can easily get h- - 1. We now want to 
compute h- by using our technique for computing Hecke L-functions over totally 
real cubic fields at s = 1. We let X be either of the two conjugate quartic Hecke 
characters of conductor YN/L associated with the cyclic quartic extension N/L. 
We have AX = A72 53/7r3 and 

72 N 257w6 1(,X 

Moreover, as 5 is inert in L/Q, then (AL/(5))* is a cyclic group of order 124 and 
there are two characters of order 4 on this group, say Xo and Xo Let a be any of 
the generators of the cyclic Galois group Gal(L/Q) of order three. Then Xo o a is 
necessarily equal to Xo or X3. But Xo oC = Xo would yield Xo = Xo o C3 = X27 = Xo 
which is impossible. Therefore, Xo o a Xo; and since for any integral ideal I of 
AL we have (NL/Q(I)) = ffafa and since the narrow class number of L is equal 
to one, we get 

x(f) = Xo(NL/Q(I)) 
and 



388 S. LOUBOUTIN 

Lemma 16. We have a5m (X) = 0, and if p : 5 then 

(Xo(P if p = 7, 
I(m+l)(m+2) -Om(p) if p = +1 (mod 7) (and p 7 7), 

10 if p # ?1 (mod 7) and 3 m (and py 47), 
XOm (P) if p # +1 (mod 7) and 3 m (andp p& 7). 

Note that the restriction of Xo to the image of Z in (AL/(5))* must be a quartic 
character. Therefore, we may assume that this restriction is defined by the following 
table, which enables us to compute Xo(p) for any prime p : 5: 

|n |1 2 3 4 

Xo(n) I1 i -i -1 

Now, as L is a totally real cubic field, the proof of Theorem 6 yields: 

Theorem 17. Let y= 0.577 215 664 901 532 860 606 512 090... denote Euler's 
constant and let B be positive. Set S1(0) =-Y, S2(0) = 1r2/6, and for n > 1 set 

si (n) = --y + 5? 8 2 (n) = + Ek 
k=1 . k=1 

and for i {1, 2}, set an,i(B) = An,i-Bn,i log B + 4 log2 B, where 

(2 + 3-i)2 + 12s +3i + 9(si (n))2 + 3s2(n) 

and 

Bn = 2n+ 3-i + 12si(n). 

We have the following power series expansions: 

K3,1(B) = 1 + E anX,(B) (2n 2)n(l)3 
n>O 

2 2)n!3 

and 

K3,2(B) 3/2 B + E 
an> 

2 

(2i-+ 1)(, 

2 

)3 

Finally, we explain on this particular example a general strategy based on (12) 
which enables us to compute Wx efficiently. We use the results of Section 2: we set 

S an (X)H3 (n/A) 
n>1 

and note that 

H3(B) =-K3,1 (B) =B E h (r2!)n 
n>O 

with 

hn = 9(si(n)))2 + 3s2(n) - 12s1 (n) log B + 4 log2B, 
which enables us to compute numerical approximations of S as precisely as desired. 

If we can deduce from them that S :& 0, then on plugging x = 1 in (12) we get Wx = 

S/S, which enables us to use (10) for numerical computations. Note that if Wx = 

-1 then necessarily S = 0, so that this trick is useless for pure quaternion octic 
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CM-fields. However, in our present situation, according to numerical computation, 
we do have S : 0, and we computed 

S = 1.093107 + 0.998977 ..i, 

Wx = 0.089805 + 0.995959... i, 

L(1, X) = 0.975462... + 0.230275 i 

and h- = 1. Moreover, numerical computations suggest, and one can prove, that 

W4 = (117 - 44i)/125 = (11 - 2i)2/125. 

6. FINAL REMARKS 

We refer the reader to [Lou7] for an efficient technique for computing relative 
class numbers of abelian CM-fields by using a technique similar to the one developed 
here for evaluating L-series associated with Dirichlet characters at s = 1. 

The reader will find in [Lou7] an extensive use of the technique introduced in 
section 5 for computing Artin root numbers Wx. We also point out that the example 
dealt with in Section 5 is not satisfactory, and that it would be worth computing 
relative class numbers of CM-fields of degree greater than six which would be neither 
abelian nor abelian extension of real quadratic fields, but which would be abelian 
extensions of totally real cubic fields. 

Added in February 1999: We can now refer the reader to [S. Louboutin, Com- 
putation of L(0, X) and of related class numbers of CM-fields, Preprint Univ. Caen 
(1999), submitted] for more satisfactory examples. The reader will find there ex- 
amples of computation of relative class numbers of non-abelian normal CM-fields 
N of degree 24 and Galois group the special linear group over the finite field with 
three elements by using evaluations of L(1, X) for Hecke L-functions associated with 
quartic characters X on narrow ray class groups of non-normal totally real sextic 
fields L. 

We refer the reader to [LP] for an application of the technique developed here to 
the computation of relative class numbers of dicyclic CM-fields of degree 4p. Let us 
point out that, in contrast with dihedral CM-fields of degree 4p, where Artin root 
numbers Wx are always equal to +1, Artin root numbers Wx of dicyclic CM-fields 
of degree 4p may depend on X 

All our computations were programmed in Kida's language Ubasic, which allows 
fast arbitrary precision calculation on PC's. 
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7. TABLES 

TABLE 1. Some Hilbert 2-class fields 

dL p+ hL Q 2n h- 

776 2 2 5Z + + 8 L(1, i) = 2.215788 9 = 32 

2005 5 4 3Z + 2 16 L(1, i3) = -1139895 49 = 72 

1488392 2 36 83Z + 160+v/;i z 16 L(1, 3) = 2.527962 115432 
2 ~~~L(1, i3) = 2.390673 

2234773 5573 36 53Z + Z 16 L(1, <) = 1.637874 221 93521 
2 L(1,/3) = 1.002971 = 47112 

2331641 13 36 109Z + 135+V/4 z 16 L(1, 3)=02.619148 1841932 

L(1, i) = 4.124139 

5249 29 8 2Z + z 32 L(1, 3)=0.986256 2209 = 472 2 L(1, i5) = 0.741952 20 7 

L(1, 07) = 0.686522 
L(1, /) = 0.510605 

311+V iZ L(1, i3) = 0.802548 2908841 223757 72 307Z + Z 32 70 667692 
L(1, i5) = 0.807890 

L(1, 07) = 3.063943 
L(1, p) = 2.852337 

L(1,03) = 1.492483 
L(1, i5) = 1.433773 

28981 7 16 |Z + z 64 L(1 '7) =2 964050 26 076792 
2 L(1, i9) =1.594397 

L(1, i11) = 0.501012 
L(1, i13) = 0.442302 
L(1,_15) = 1.706111 
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TABLE 2. Some dihedral CM-fields of degree 4p 

p 4p dL q XL(q) M all W 2j+1 = 1 and h- = 1 and h= 
3 12 21 109 +1 Q(\/=3, V/_) L(1, +b) = 1.422643 324 = 182 
3 12 21 23 -1 Q(v'--, v'Y) L(1, b) = 1.498242 16 = 42 

5 20 21 101 +1 Q(\ 3, \7) L(1, +3)-1 14876 72361 = 2692 
L(1, VA) = 1.831487 731=29 

5 20 21 139 -1 Q(\3, 
\ 

7) L(1, +3) = 1.740963 
225625 = 4752 

__ ~~~~~~~~~~~~L(lvVP) = 1.048031 
L(1, b) = 0.818558 

7 28 57 43 +1 Q(v'3, V'_-) L(1,?/= 0).531292 247009 = 4972 
L(1, b5)= 2.055108 
L(1, ~) = 3.122215 

7 28 69 97 -1 Q /=, V/23) L(1, i3) = 2.822641 2 14562 127 
___ ~~~~~~~~~~~~~~L(1, 'V5) = 1.943550 =1462 

L(1, b) = 0.450594 
L(,~)= 1.863407 1 86319 77001 

11 44 209 23 +1 lV | L(1, <75 = 4.914253 992 
L(1, ?b7) = 1.324753 =1349 
L(1, +b9) = 0.589165 
L(1, b) = 0.580602 
L(1, w3) = 4.658983 

11 44 209 263 -1 Q(v'_IT, v'_9) L(1, 45) = 0.502571 2 20826 952832 
L(1, +7) = 1.229407 
L(1, +9) = 1.594568 
L(1, b) = 1. 541778 
L(1, +I) = 1.115754 

13 52 209 157 +1 L(1, 5) 0.652133 16 60602 247072 (v/I Iv/_19) L(1, ~b7) = 3.103389 1 00 40 

L(1, +b9) = 0.391887 
L(1,+b11) = 3.370253 
L(1, b) = 0.885015 
L(1, 43) = 0.381026 
L (1, 45) = 3.457565 

17 68 57 101 -1 Q(/_3, Z1) L(1, 7) 0.342002 
74367 080892 

L(1,4,9) = 1.705920 737009 

L(1, +11) = 0.553422 
L(1, 4,13) = 0.571116 
L(1,4'15) = 1.785428 
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TABLE 3. The 50 pure quaternion octic CM-fields with q < 1171. 

All Wx = -1 and 

case q L(1,X) h-g = 2(hg )2 case q L(1,x) hN = 2(hN )2 

1 3 0.822467 2 26 523 0.693514 43218 = 2 1472 
2 11 0.672927 18 = 2 32 27 547 0.825474 66978 = 2 1832 
3 19 0.909042 98 = 2 72 28 563 0.714363 53138 = 2 1632 
4 43 0.516432 162 = 2 92 29 571 0.635215 43218 = 2. 1472 
5 59 0.878227 882 = 2 212 30 587 1.021428 118098 = 2 . 2432 
6 67 0.994325 1458 = 2 . 272 31 619 0.777291 76050 = 2 1952 
7 83 0.743193 1250 = 2 252 32 643 0.732929 72962 = 2. 1912 
8 107 1.176050 5202 = 2 512 33 659 0.677692 65522 = 2. 1812 
9 131 0.960591 5202 = 2. 512 34 683 1.304146 260642 = 2 . 3612 
10 139 0.940807 5618 = 2 532 35 691 0.789139 97682 = 2 . 2212 

11 163 0.560084 2738 = 2 372 36 739 0.724527 94178 = 2 . 2172 
12 179 1.171670 14450 = 2 852 37 787 0.868449 153458 = 2. 2772 
13 211 1.321404 25538 = 2 1132 38 811 1.104397 263538 = 2 3632 
14 227 0.923916 14450 = 2 852 39 827 1.202373 324818 = 2 4032 
15 251 0.756931 11858 = 2 772 40 859 0.692251 116162 = 2 2412 
16 283 0.898029 21218 = 2 1032 41 883 1.193182 364658 = 2 4272 
17 307 0.892122 24642 = 2 1112 42 907 1.341156 486098 = 2 4932 

18 331 0.618713 13778 = 2 832 43 947 0.612290 110450 = 2 2352 
19 347 0.604406 14450 = 2 852 44 971 0.663225 136242 = 2 2612 
20 379 0.761704 27378 = 2 1172 45 1019 1.324502 598418 = 2 5472 
21 419 0.818541 38642 = 2. 1392 46 1051 0.903852 296450 = 2 3852 
22 443 1.019265 66978 = 2 1832 47 1091 0.915946 328050 = 2 4052 
23 467 0.966883 66978 = 2 1832 48 1123 0.845903 296450 = 2 385 
24 491 1.211086 116162 = 2 . 2412 49 1163 1.232639 675122 = 2 5812 
25 499 1.152113 108578 = 2 . 2332 50 1171 1.262146 717602 = 2. 5992 

8. ADDED AFTER POSTING 

In the statement after Theorem 17, the sentence that reads 
"Note that if Wx = -1 then necessarily ..." 

should read 
"Note that if S is real and Wx =-1 then necessarily ...". 
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